Global Space - Time Models for Climate Ensembles
نویسندگان
چکیده
Global climate models aim to reproduce physical processes on a global scale and predict quantities such as temperature given some forcing inputs. We consider climate ensembles made of collections of such runs with different initial conditions and forcing scenarios. The purpose of this work is to show how the simulated temperatures in the ensemble can be reproduced (emulated) with a global space/time statistical model that addresses the issue of capturing nonstationarities in latitude more effectively than current alternatives in the literature. The model we propose leads to a computationally efficient estimation procedure and, by exploiting the gridded geometry of the data, we can fit massive datasets with millions of simulated data within a few hours. Given a training set of runs, the model efficiently emulates temperature for very different scenarios and therefore is an appealing tool for impact assessment.
منابع مشابه
Use of multi-model ensembles from global climate models for assessment of climate change impacts
Multi-model ensembles of climate predictions constructed by running several global climate models for a common set of experiments are available for impact assessment of climate change. Multi-model ensembles emphasize the uncertainty in climate predictions resulting from structural differences in the global climate models as well as uncertainty due to variations in initial conditions or model pa...
متن کاملProjection of occurrence of extreme dry-wet years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices
[1] The probabilities of the occurrence of extreme dry/wet years and seasons in Europe are estimated by using two ways of the Standardized Precipitation Index (SPI and SPI-GEV) and the Standardized Nonstationary Precipitation Index (SnsPI). The latter is defined as the SPI by fitting precipitation data with a nonstationary Gamma distribution in order to model the precipitation time dependence u...
متن کاملA methodology for probabilistic predictions of regional climate change from perturbed physics ensembles.
A methodology is described for probabilistic predictions of future climate. This is based on a set of ensemble simulations of equilibrium and time-dependent changes, carried out by perturbing poorly constrained parameters controlling key physical and biogeochemical processes in the HadCM3 coupled ocean-atmosphere global climate model. These (ongoing) experiments allow quantification of the effe...
متن کاملMatérn-based nonstationary cross-covariance models for global processes
Many spatial processes in environmental applications, such as climate variables and climate model errors on a global scale, exhibit complex nonstationary dependence structure, in not only their marginal covariance but also their cross-covariance. Flexible crosscovariance models for processes on a global scale are critical for an accurate description of each spatial process as well as the cross-...
متن کاملChallenges in combining projections from multiple climate models
Recent coordinated efforts, in which numerous general circulation climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multimodel ensembles sample initial conditions, parameters, and structural uncertainties in the model design, and they have prompted a variety of approaches to quantifying uncert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013